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OUR DDCS OBJECTIVE

Keep 4 novel Investigational New Drug (IND) programs running
at FDA.

The United States Food and Drug Administration's Investigational New Drug (IND)
program is the means by which a pharmaceutical company obtains permission to
start human clinical trials and to ship an experimental drug across state lines
(usually to clinical investigators) before a marketing application for the drug has
been approved.


https://en.wikipedia.org/wiki/Food_and_Drug_Administration

DDCS Mission:

To develop combination drugs for orphan tropical and
pediatric diseases, testing potential binary and ternary
therapies in dynamic data-driven simulations at various
combinations of two or three points in the pathways,
choosing to bring forward the most valuable
combinations that show the lowest probability of side
effects.



The problem

Developing novel therapies for new
diseases is risky and expensive.

Not just for Lambert Eaton
Myasthenic Syndrome and Menkes
Syndrome, but also for other rare
diseases, like Ebola, Chikungunya,
Prader-Willi Syndrome, and ADHD in
FXS.
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Market

Disease prevalence,
reimbursement,
competition, pricing,
capital requirements and
capital availability

Al System

Al must look at more than just science to solve the problem.

Intellectual
Property

Patentability, contracts,
portfolios, encumbrances,
white space, landscape,
valuation, quality,
monetization, licensing

Regulatory

Pediatric rare disease,
tropical disease, fast track,
breakthrough status,
jurisdictions, guidances,
quality management,
outcomes

Science

Pathways, signaling,
receptors, genes, RNAI,
cells, immunotherapy,
populations, druggability,
manufacturability



Al Approach Leads to New Therapies

AND a 50% increase in INDs! Menkes Disease

Dietary copper (Cu)

1.  Methylpropanedihydrazide Compounds for Menkes Syndrome, US
patent application number 62732350, filed Sep 17 2018

2. Nanotube Delivery Device for MPDH Compounds for Menkes
Disease, US patent application number 62732379, filed Sep 17 e )
2018

Kidney  /
(High Cu) / Bones

3. Biodegradable Nanopatrticles for Controlled Release of ICP4 o
Compounds for LEMS, US patent application number 62722146, 5

filed AUg 23 2018 Lambert-Eaton syndrome
4. ICP4 Compounds for Treatment of Lambert Lambert-Eaton ' -E?nf-;y‘_%;;;g;ggmv;m .
Myasthenic Syndrome. US patent application number 62690557, R J =
filed Jun 27, 2018 -l -
igns/symptoms: @ o m
5. Preparation of ICP4 Compounds. US patent application number e s R "

that improves with repeated use

62690606, filed Jun 27, 2018

« Other characteristics:
« Associated with malignancy, channel
occurring as a paraneoplastic

syndrome (e.g. small cell
lung cancer)



Explore and develop novel new Al algorithms and approaches for discovery

of scientific laws and governing equations for complex physical
phenomena

Explore new approaches to assess where data are too sparse, noisy, or are
otherwise inadequate to build predictive models; to generate testable
hypotheses; to identify high value experiments that could alleviate the
problems of data shortfalls; and to quantify the confidence of predictions
outside of the training space. (more on this later)




Generations of Al

Al still falls short of being a trusted and valued collaborator in scientific
discovery and technology development.

“First Wave” (rule based) (and this is still very fast, where it exists.)

“Second Wave” (statistical learning based) Al technologies. Mostly the current
state.

“Third wave” Al theory and applications that address current limitations by
enabling machines to contextually incorporate available data, facts, models,
heuristics, and additional information to achieve greater robustness,
adaptability and generalizability.



Al Challenges

A key challenge is how well statistical Al methodologies can generalize beyond
the narrow set of questions they are initially trained on. As Al and deep learning
are increasingly being applied to predict the behavior of complex nonlinear
dynamic systems where the system state is not fully observable and the data
lack coverage, this question of generalizability becomes even more important.
Generalizability in today'’s state-of-the-art approaches remains poorly
understood and quantified. This leads to wasted time and money in new drug
development.




Al is not yet a valued partner in scientific

discovery and the scientific process

Current “second wave” Al systems are in general incapable of “understanding”
whether the questions they have been trained on can be usefully answered, or
whether they even make sense given the provided set of input data.

Today'’s Al, if incorporated at all in a process, is applied in Yes-No and
regression types of analyses of big data. Human scientists handle most of the
knowledge-centric aspects of the process, often relying on human experience,
heuristics, ad hoc and domain-specific methodologies.



What would we like Al to do for us?

Assess the adequacy of the data, formulate questions, generate hypotheses
and testable predictions, identify additional high value experiments that could
alleviate data shortfalls, and quantify confidence of predictions outside of the
training space.

Currently these all lie outside the capabilities of most state-of-the-art Al
approaches and fall into the domain of human experts.



Example for Al: Tycho Brahe’s data (along with some
supplemental data) mapping the trajectories of planets in
the solar system as seen from an observatory on earth.

The trajectories, although
complicated, clearly correspond to
reduced dimensional manifolds.

So, could an Al Research
Associate accomplish or assist in
the following:




e Recognize that the coordinate system of the observed data is
non-ideal and that a better coordinate system might lie two or three
unitary transformations removed?

e I|dentify areas where data are inadequate, e.g., due to ambiguities,
gaps, inadequate coverage, inadequate resolution, inadequate
signal-to-noise, insufficient modalities, confounding variables,
measurement errors, or outlier results, and provide guidance for
obtaining the highest-value augmenting data?

e Arrive at a parsimonious, predictive model (e.g., uncover Kepler’s
laws)?

e Arrive at a parsimonious, predictive model with the potential to
generalize across multiple domains (e.g., uncover Newton’s laws and
a 1/r gravitational potential model for gravity)?



e Deduce conservation of energy, momentum and angular
momentum?

e Propose testable experiments to validate hypotheses
and new models (e.g., predict the next return of Halley’s
comet)?

e Uncover a problem with Mercury’s orbit and deduce a
better abstraction such as Einstein’s general relativity?

e Test for consistency across multiple datasets and
observations?



Example 2. Multiscale structured materials.
Density Functional Theory and other ab initio modeling methods at the primitive

level are computationally intensive and don't scale well beyond a small number
of atoms.

Modeling materials properties across scales generally requires a hand-tweaked
stitching together of a patchwork of different models at different scales.

What happens if one changes constituents or adds different dopants?
How do defects and microstructures affect properties?

Could Al derive deep insights from existing experimental and model data
obtained for similar material structures?



e Could it generate useful multiscale representations and
models that generalize gracefully across different
constituents?

e Could it guide the discovery of new materials with desired
properties?

e And importantly, could it provide feedback regarding the
adequacy of the data, where additional data would help,
and how confident the predictions are in regimes not
covered in the training database?



Humans, while capable of generating deep insights, lack

the bandwidth to process the high throughput data of
complex, high dimensional systems.

For Al to collaboratively support
humans, Al technologies must be
able to process and distill big data
into physically-relevant
representations comprehensible
and suitable for collaboration.




The third wave of Al

Perceiving

contextual Learn ' ng
model Abstracting

Pathway to Third Wave Al hat

1. Al should assess both accuracy and generalizability of models. How well does the Al predict
evolutionary trajectories, dependencies on input or control parameters, and Al response to
perturbations?

2. Find and resolve inconsistencies and ambiguities, either in the data or in model predictions. Can the
Al answer new questions of the system for which it has not been trained? Al should quantify or
provide bounds for model performance for both in-training and out-of training input space.

3. Quantify the extent to which additional data, higher resolution data or new data modalities can help.
Can the Al identify high value experiments to better inform and constrain its models?



Hardware for
Third Wave Al



New Hardware for Third Wave: BrainChip Uses Akida Architecture

Neuromorphic System-on-Chip (NSoC) is based on spiking-neural-network (SNN) technology. Armed
with approximately 1.2 million neurons and 10 billion synapses, the Akida NSoC
spiking-neural-network chip takes on training and inference tasks.




Spiking neural networks offer an alternative to the convolutional neural networks that

have become very popular.
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1. Maass, Wolfgang. 1997. “Networks of Spiking Neurons: The Third Generation of Neural Network Models".

SNNs translate data into a stream of spikes that also flow through the neural network. These are

discrete events rather than the CNN’s array of values.




BrainChip’s Akida NSoC is a self-contained chip with a conventional processor plus

the Akida neuron fabric.
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The Akida NSoC is moving up the ladder in terms of complexity with 1.2 million

neurons and 10 billion synapses in a multichip system.

1Q

bfainchip*

Logarithmic Scale

302K Neurons
7.5K Synapses

250K Neurons
10M Synapses

960K Neurons 1.2M Neurons TIM Neurons
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The Akida does very well with the popular Cifar-10 dataset. The Cifar-10, which

identifies 10 common objects, uses less power and is significantly less costly.

Top-1 Accuracy
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BEST Engine for
Adaptive
Resonance



Adaptive Resonance Theory in Neural Networks

ART works in a series of levels. Over time, images that are learned are represented in categories on
upper levels of the system.

When a new image of a truck is fed into the first level, for example, it activates one
of the memory categories and is sent up to be matched with that category. This
"bottom-up"” process is a common property among adaptive systems. What makes
an ART system different is that at the same time the signal is going up, the receiving
category is sending a signal "top-down" to the first level to make sure an adequate
match exists. A category looks back down and says, “What am | learning; what
category should this be in?" If the match isn't close enough, an orienting subsystem
is activated, which automatically closes off the activated category and searches for
a category that would give an adequate match. If no adequate match is found, the
system creates a new category.



Projecting Data into Hyperspace
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Provides a means of measuring increased analytical power



Projecting Spectra into Hyperspace

Sunilar specira cluster in sunilar regions of hyperspase,

MAPPING A SPECTRUM AS A POINT

Mapping Different apecira as Poims
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Displacement on cach axis represents signal intensity  The best tcehnique is the one that scparates the samples bost

each information vector.

(smallest group size and largest distance between groups).




The shape, size and skew of such clustere B not
ncocsiarily casy to predict.
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Make random mixtures of three components whose speetra are known
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A Random Perfeci Mixiure Ellipsoid

Moving one of the constituent poicts merely changes the size and
orientation of the cluster of misturss.
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Central Lirnit Theorem Frequency Distribution
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The central limit theorem explains why c¢lliptical clusters result.



Skew appears m the multivariate distribution.

Random Noisy Spectra Elipsoid Balancing Property of Mean
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Skew in the distributions of the underlying constituents, such as in e

cholesterol in man, also 1s reflected in spectral data clusters.



Balancing Property of Mean
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Confidence limits also change when a distribution is skewed.



For the normal distribution one SD is a central 68%
confidence interval
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The Makaianobis distance (D = SQRT (T**M2*T"*), where M2
the inverse covariance matrix) is a muiltidimensional SD for normal
distributions.
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Efficiency of Mshalanobis and BEST Metric Calculations
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Nonparametric Analysis
B ®

Skewed Cluster & Rubber Yardstick
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The same definition of one SD can also be applied Distances in SDs depend not only on direction in space, but
nonparameirically to skewed distributions. also on the cluster you select as your metric.



How do you calculate a multidimensional SD for a skewed
distribution? One way 1s the BEST method (Bootstrap Error-
adjusted Single-sample Techmique). Like all statistics, you have to
start with an observed data set (calibration set or training set).

Hypothetical Training Set Coverage
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Suppose you start with an observed data set T, and you would like to
use T to estimate the varniability of the population from which it was
drawn. The bootstrap lets you make the estimate.



Monte Carlo Integration THE BOOTSTRAP DISTRIBUTION
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Formation of Hypercylinder

HYPERCYLINDER

Monte Carlo of Bootstrap Distribution
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Strategy: project replicates onto hyperline and estimate SD



Area of Triangle
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Effect of Hypercylinder Radius
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However, this SD) is symmetric like the Mahalanobis distance. The

i i i difference between the median and the mean can be used as the basis
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projected on the hyperline connecting C and X.



Direction of Correction
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Skew-Corrected Distance Function
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Counting Distances in SDs
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BEST Third Wave Outperforms Second Wave Statistics

Accuracy and Precision of QBEST and Mahalanobis (n=d+2) OBEST and Mahalanobis Run Times (n=d+2)
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Accuracy and precision ofthe BEST and The running time ofthe BEST calculation is

Mahalanobis metrics using an N(0,1) synthetic n’ faster than the Mahalanobis even without
data set parallelization



BEST Third Wave Matches Performance of Second Wave for Parametric Problems

Compare Mahalanobis and BEST SDs
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Experiment Number

With only 2 independentvariables and 100 samples from a synthetic N(O,1) distribution, the
accuracy ofthe BEST metric is about the same as the Mahalanobis metric. The error comes from
the 100 randomly selected samples poorly representing the N(0, 1) distribution.



The technology:
SNN+BEST+ART
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Disease prevalence,
reimbursement,
competition, pricing,
capital requirements and
capital availability

Al System

Intellectual
Property

Patentability, contracts,
portfolios, encumbrances,
white space, landscape,
valuation, quality,
monetization, licensing

Al must look at more than science to solve the problem.

Regulatory

Pediatric rare disease,
tropical disease, fast track,
breakthrough status,
jurisdictions, guidances,
quality management,
outcomes

Science

Pathways, signaling,
receptors, genes, RNAI,
cells, immunotherapy,
populations, druggability,
manufacturability
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data for four new molecular

entities (NMES) to treat:
Chikungunya and Ebola virus
infections, and Prader Willi
Syndrome as well as Attention
Deficit Hyperactivity Disorder
(ADHD) in patients with Fragile X
Syndrome (FXS).

Prader Willi

] ' l _‘
Fragile site

We have FDA Orphan Drug
Designations for Ebola virus and
Prader Willi Syndrome

ADHD in FXS



Al Approach Leads to New Therapies

AND a 50% increase in INDs! Menkes Disease
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anything is possible




“Artificial neural networks for modeling and simulation”, Google project
815523038794

“Computer Simulations of Glucose-Insulin Interaction”, National Science
Foundation ACI-1053575 number BIO170011

“Applications of Parallel Computing Course”, National Science Foundation
CCR140008



