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Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized
by inattention, hyperactivity, and impulsivity. The treatment of ADHD could potentially be
improved with the development of combination therapies targeting multiple systems. Both the
number of children diagnosed with ADHD and the use of stimulant medications for its treatment
have been rising in recent years, and concern about side-effects and future problems that
medication may cause have been increasing. An alternative treatment strategy for ADHD
attracting wide interest is the targeting of neuropsychological functioning, such as executive
function impairments. Computerized training programs (including video games) have drawn
interest as a tool to train improvements in executive function deficits in children with ADHD. Our
lab is currently conducting a pilot study to assess the effects of the online game Minecraft as a
therapeutic video game (TVG) to train executive function deficits in children with ADHD. The
effect of the TVG intervention in combination with stimulants is being investigated to develop a
drug-device combination therapy that can address both the dopaminergic dysfunction and
executive function deficits present in ADHD. Although the results of this study will be used to
guide the clinical development process, additional guidance for the optimization of the executive
function training activities will be provided by a computational model of executive functions built
with artificial neural networks (ANNs). This model uses ANNs to complete virtual tasks
resembling the executive function training activities that the study subjects practice in the
Minecraft world, and the schedule of virtual tasks that result in maximum improvements in ANN
performance on these tasks will be investigated as a method to inform the selection of training
regimens in future clinical studies.
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Background

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder
characterized by inattention, hyperactivity, and impulsivity1. The onset of ADHD typically occurs
by 3 years of age, and must occur by 12 years of age for a diagnosis. While symptom severity
decreases with age, ADHD may persist into adulthood2, when the hyperactive-impulsive
symptoms typically subside but the inattentive symptoms persist3. The cause of ADHD remains
largely unknown, but dopaminergic dysfunction has been implicated as playing an important
role. For example, stimulant medications (such as methylphenidate and amphetamine) that
increase dopaminergic neurotransmission are the most efficacious treatment for ADHD, and
investigations into genetic factors of ADHD have revealed modest associations for the
dopamine transporter (DAT1) and dopamine receptors D4 & D5 (DRD4, DRD5)4. However,
ADHD has a considerably high estimated heritability rate5, so these modest associations
observed for dopaminergic system genes indicate that many other factors also play an
important role. Therefore, the treatment of ADHD could potentially be improved with the
development of combination therapies targeting multiple systems.

Both the number of children diagnosed with ADHD and the use of stimulant medications
for its treatment have been rising in recent years6. The overall prevalence of ADHD increased
from 6.1% in 1997-1998 to 10.2% in 2015-2016. The prevalence in boys increased from 9.0% to
14.0%, while the prevalence in girls more than doubled from 3.1% to 6.3%. However, it is
unknown at this time whether these increases reflect the actual number of ADHD cases, or are
instead a result of factors leading to increased diagnosis of ADHD, such as increased physician
awareness, changes in diagnostic criteria, or increased access to medical care. In 2011, 3.5
million children were being treated with stimulants according to parents7. In addition,
prescriptions for ADHD medications in women of child-bearing age increased by 344% from
2003 to 2015, which included a 700% increase in women of ages 25-29 years and a 560%
increase in women of age 30-34 years8.
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Despite the variety of pharmacologic treatment options available and their widespread

use, there still remains a strong need to develop additional therapies9. While a general
consensus exists for the efficacy of stimulants (the first-line therapy for ADHD)10, a recent
systematic review of methylphenidate concluded that the evidence supporting its use is of very
low-quality, and more caution should be exercised in its use11. In addition, the benefits that result
from stimulant use do not persist after discontinuation and patients with ADHD still suffer from
adverse long-term outcomes such as poor academic performance, drug addiction, and criminal
behavior to a much greater degree than non-ADHD subjects despite optimal therapy12. Despite
their tolerability in the majority of ADHD patients, the side effect profile of stimulants (anxiety,
irritability, insomnia, gastrointestinal distress, loss of appetite, and growth suppression) still
precludes their use in a significant number of patients due to the widespread prevalence of their
prescribing. An additional safety concern of stimulants are their long-term effects, for which
there is a paucity of research in humans. However, recent studies have shown altered cerebral
blood flow responses after discontinuation of stimulant use13, reduced GABA levels in the
pre-frontal cortex of ADHD patients treated with stimulants at a young age14, and altered white
matter in children treated with methylphenidate15. Drug treatments also suffer from further
under-utilization due to parents’ concerns about their safety and preference for the use of
non-drug treatments9. Finally, the widespread use of stimulants has also led to their misuse and
abuse for non-medical purposes, which may be obviated by a greater availability of other
effective treatments for ADHD.

An alternative treatment strategy for ADHD attracting wide interest is the targeting of
neuropsychological functioning, such as executive function impairments. Russell A. Barkley
proposed an executive function theory for ADHD in 1997, which states that an impairment in the
core executive function inhibition is the central causative factor in the development of ADHD16.
Since the hyperactive behavior of children with ADHD reflects a lack of behavioral inhibition and
the use of inhibition keeps attentional resources available for the use of other executive
functions, Barkley reasoned that a deficit in inhibition leads to a cascade of impairments in other
executive functions culminating in the characteristic behavior of ADHD.

Executive functions are a set of effortful, top-down mental processes that govern
attention and regulate behavior17. Executive functions enable both visualization of the future and
remembrance of the past, allowing for control of one’s behavior over time to accomplish
long-term goals and self-reflection to recognize past mistakes so that they are not repeated. In
addition to the consideration of behavior across time, executive functions also enable conscious
manipulation of thoughts and ideas, which includes the use of creativity to combine conflicting
ideas in novel ways.

A set of core executive functions has been proposed to serve as a foundation for higher
order executive functions and the general application of executive functioning in life activities17.
Application of the executive functions allows for the development and use of important skills
such as time management, organization, planning, self-regulation, sustained attention, and
metacognition. Two examples of core executive functions are working memory and inhibition,
which work together very closely. Working memory is the ability to hold a piece of information in
consciousness (short-term memory) and then manipulate it in some way18. Inhibitory control
includes the ability to ignore environmental distractions (attentional control)19 as well as the
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ability to prevent automatic or impulsive thoughts and behaviors when they may not be
appropriate.

Computerized training programs (including video games) have drawn interest as a tool to
train improvements in executive function deficits in children with ADHD19-21. Our lab is currently
conducting a pilot study to assess the effects of the online game Minecraft as a therapeutic
video game (TVG) to train executive function deficits in children with ADHD22. The effects of the
TVG intervention in combination with stimulants is being investigated to develop a drug-device
combination therapy that can address both the dopaminergic dysfunction and executive function
deficits present in ADHD. Although the results of this study will be used to guide the clinical
development process, additional guidance for the optimization of the executive function training
activities will be provided by a computational model of executive functions built with artificial
neural networks (ANNs)23. This model uses ANNs to complete virtual tasks resembling the
executive function training activities that the study subjects practice in the Minecraft world, and
the schedule of virtual tasks that result in maximum improvements in ANN performance on
these tasks will be investigated as a method to inform the selection of training regimens in future
clinical studies.

Artificial neural networks (ANNs) are a group of computational models that are inspired
by the structure and function of biological neural networks23, and are part of a broader collection
of computational techniques called machine learning algorithms, which are a set of
computational models that learn how to complete tasks more accurately by performing the tasks
on their own without explicit guidance from a human24. ANNs are composed of individual units
that receive inputs, process these inputs, and produce an output, similar to the way that
individual neurons in biological neural networks receive, process, and produce electrical signals.
Multiple units are combined into layers, and these layers are combined to form the full network.
Each unit in a given layer receives multiple inputs produced by units in the previous layer, and
produces a single output that is used as an input for multiple units in the next layer. The design
of the units, layers, and their connectivity pattern is known as the network architecture.

ANNs have attracted interest as a computational model in drug development and
healthcare because of their ability to learn how to accomplish tasks that involve the processing
of complex input data. For example, ANNs have been used to predict the quantitative
structure-activity relationships of potential drug candidates25, generate novel chemical structures
for drug candidates26, predict the occurrence of cardiovascular disease27, and screen for skin
cancer28, diabetic retinopathy29, and other retinal diseases30. This automation of complex tasks
requiring specialized knowledge may offer a significant potential advantage in time and cost
savings for the healthcare system.

Due to their similarity to biological neural networks, ANNs could potentially be used as a
computational model for neurological activity. This premise inspired the selection of ANNs as a
computational tool to simulate the training of executive functions in this project. Importantly, the
neurological activities of interest in this project are the neural adaptations that occur during the
learning process, rather than the actual neurological activity that occurs during the use of
executive functions. While it is recognized that ANNs are extensively simplified approximations
for biological neural activity, they are nonetheless being developed to perform complex human
tasks such as goal-oriented conversations31-32 and navigating autonomous vehicles33. Thus, it is
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hypothesized that ANNs can be trained to perform virtual tasks that resemble activities in
humans that require the use of executive functions, and that this training process in ANNs can
provide insight into the optimal way to train the use of executive functions in humans.

The construction of a computational model for executive function training would enable
the rapid in silico simulation of different combinations and schedules of these activities (Figure
1). If a virtual set of activities can be designed to resemble the use of human executive functions
closely enough, these simulations could potentially provide insight into how variations in the
selection and scheduling of these activities affect the outcomes of executive function training in
humans. An examination of the effects of varying combinations of these virtual activities on ANN
performance would inform the selection of an optimal schedule of activities to improve executive
function deficits in humans. In this way, an effective virtual simulation model of executive
function training activities could provide considerable time and cost savings compared to clinical
studies for the optimization of the executive function training activity schedules in humans.

Figure 1. Generation of Personalized Executive Function Training Schedules

The TVG plus stimulants drug-device combination therapy will utilize a novel
personalized medicine approach where an individualized treatment regimen consisting of an
initial stimulant dose recommendation and schedule of therapeutic video game activities will be
determined from the initial ADHD assessment results of new patients. In the computational
executive function model, a set of ANNs are used to represent a virtual “subject” comprised of a
set of executive functions that work together to perform the virtual executive function tasks. As a
virtual “subject” completes virtual executive function tasks, the ANNs representing its executive
functions will undergo further training and the “subject’s” performance on these tasks will
improve. Multiple combinations and schedules of virtual executive function tasks can then be
simulated rapidly in each virtual “subject” to determine an optimal training regimen to target the
pattern of executive function deficits in an individual patient.

The objectives of this work are to create an ANN-based representation of the core
executive function working memory, create groups of virtual “subjects” differentiated by the
performance of this working memory representation, and create an impulsivity function that can
generate automatic behaviors that do not result from the use of executive functions. The
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impulsivity function was created as an initial step towards the development of a representation
for the core executive function of inhibition, and was inspired by the race model34 and passive
dissipation hypothesis35 for behavioral inhibition. This work will serve as an initial starting point
for the later addition of more executive function representations, and the creation of virtual
executive function tasks that require the use of the executive function representations for their
completion.

Methods and Results

Generating Working Memory Deficiencies (Colab Notebook)

As a first step towards the creation of a computational model of working memory
deficiencies, convolutional neural networks (CNNs) were trained to identify handwritten digits in
the MNIST dataset. The Keras Machine Learning library36 was used to create and train the
CNNs and the experiment was run using Python v3 in a Google Colaboratory Notebook. In this
implementation, the input of an MNIST image file into the first layer of the network is proposed
to represent the holding of information in the consciousness component of working memory. The
subsequent processing of this image pixel data by the internal network layers is proposed to
represent the information manipulation component of working memory. Two groups of CNNs
were created by varying the number of MNIST images (the size of the training set) used in their
training process. A “healthy” control working memory group consisted of CNNs trained to
achieve high accuracy in the handwritten digit recognition task, while a “deficient” working
memory group consisted of CNNs trained to achieve approximately half the accuracy of the
“healthy” control group.

All of the CNNs in both groups possessed an identical architecture, or structure of layers
and connectivity between individual units. The architecture chosen was a modified version of
the original historic CNN called lenet that was developed to identify handwritten digits in MNIST
to automate zip code recognition for postal service37-38. The CNN architecture used here
consists of two sets of convolutional and pooling layers, followed by two fully-connected layers,
and a softmax classifier. The first and second convolutional layers consisted of 20 filters and 50
filters, respectively, each with a 5x5 kernel and rectified linear unit (ReLU) activation function39.
Both pooling layers used a 2x2 filter with stride = 2. The first fully-connected layer contained 500
units with the ReLU activation function, and was followed by a 10-unit fully-connected layer with
the softmax activation function. A batch normalization layer40 was included after each
convolutional layer and the first fully-connected layer before the ReLU activation function. The
maximum value of the softmax activations was selected as the final output.

To generate deficiencies in this working memory representation, the relationship
between the quantity of training examples and handwritten digit recognition performance of
CNNs was first investigated. Five groups of identically structured CNNs (n = 10 x CNNS per
group) were trained with sets of MNIST images with sizes in the range of 25 – 50000 MNIST
images per set. The MNIST images used for training were randomly selected from the training
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subset of the MNIST dataset, and randomly selected sets containing less than 100 MNIST
images were checked to ensure that they contained at least one example image of each
handwritten digit 0-9. Updates of the CNN parameters (weights & biases) were performed after
training on batches of 25 MNIST images. The categorical cross-entropy loss function41 was
used to measure the handwritten digit recognition performance of the CNNs during training and
calculate the gradients of its weights and biases. The ADAM optimizer42 was then used to
calculate the magnitude of the parameter updates from these gradients.

After training, the percent accuracy of handwritten digit recognition performance of each
CNN was evaluated on the 10,000 MNIST images of the MNIST test set, and the mean
accuracy of each group of CNNs was determined. As expected, the group mean handwritten
digit recognition accuracy increased with increasing number of MNIST images presented during
training (Figure 2). The minimum group accuracy achieved was 44.3% (SD 4.1%) with 25
MNIST training images, and the maximum group accuracy achieved was 98.2% (SD 0.5%) with
50,000 MNIST training images. The observed relationship between group accuracy and the
number of MNIST training images was logarithmic, and the rate of increase in performance was
relatively minimal in groups trained with set sizes larger than 2,500 MNIST images (mean group
accuracy = 95.7% (SD 0.5%)).

Training procedures for the CNNs representing working memory were selected to create
a sizable difference in performance between the “healthy” working memory control group with
high handwritten digit recognition performance and the “deficient” working memory group with
poor handwritten digit recognition performance in a minimal amount of computational time.
Computational efficiency was prioritized over marginal improvements in accuracy in the
selection of a training procedure for the “healthy” working memory control group. While a 2.5%
improvement in group accuracy was observed from increasing the training set size from 2,500 to
50,000 MNIST images, this improvement was achieved at a significant cost of increased
computational time. Thus, a training set size of 2,500 MNIST images was selected to efficiently
train CNNs in the “healthy” working memory control group to achieve a sufficiently high
handwritten digit recognition performance.

Figure 2. Effect of MNIST Training Set Size on MNIST TestSet Handwritten Digit Recognition of CNNs (n
= 10 x CNNs per Group)
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The selection of a training procedure for the “deficient” working memory group was
based on a similar consideration of weighing the level of performance achieved with the training
time required to achieve the performance. A large performance decrement compared to the
“healthy” working memory group was desirable in this case. The minimum accuracy achieved in
this experiment was 44.3% (SD 41%) in the group trained with 25 MNIST images. While this
level of accuracy could be decreased further by reducing the size of the training set, this
decrease was achieved at a cost of significantly increased computational time to randomly
select smaller training sets with at least one MNIST image containing each handwritten digit.
Thus, a training set size of 25 MNIST images was selected to efficiently train CNNs in the
“deficient” working memory group to achieve a sizable reduction in handwritten digit recognition
performance compared to the “healthy” working memory control group.

To summarize, this investigation was performed to select training procedures for MNIST
handwritten digit recognition by CNNs as a computational representation for working memory in
humans. In this context, a “healthy” working memory was defined as high handwritten digit
recognition performance by CNNs and a “deficient’ working memory was defined as poor
handwritten digit recognition performance by CNNs. Differences in performance were created by
varying the number of MNIST images used to train the CNNs. A training set size of 2,500
MNIST images was selected to generate CNNs with high handwritten digit recognition
performance representing “healthy” working memory, while a training set size of 25 MNIST
images was selected to generate CNNs with poor handwritten digit recognition performance
representing “deficient” working memory.

Prepotent Impulsivity

As a first step towards the construction of a computational model for the behavioral
inhibition executive function, the prepotent impulsivity function was created to generate
impulsive behaviors that may be inhibited. Prepotent responses are defined as unproductive
behaviors that have been overlearned in a given circumstance, and are then used
indiscriminately in other circumstances where they may no longer be appropriate16,43. This
function was designed to be an addition to the MNIST handwritten digit recognition
representation of working memory and activates unproductive behaviors resembling prepotent
responses in this context.

When the convolutional neural networks representing working memory were evaluated
for their performance, their handwritten digit recognition accuracy was determined on an
ordered test set. In other words, the convolutional neural networks were first presented with all
the images containing a handwritten zero, then all the images containing a handwritten one, all
the images containing a handwritten two, and so on. In contrast, this experiment was conducted
with shuffled test sets where the images containing the various handwritten digits were
presented to the convolutional neural networks in a random order. A shuffled test set will contain
randomly distributed sub-sequences of consecutive, but different, images containing the same
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handwritten digit. When these sub-sequences with consecutive images containing the same
handwritten digit are presented to a convolutional neural network, a prepotent impulse is
created. This prepotent impulse grows in strength as the number of consecutive digit repeats
grows larger and promotes an automatic response with the identity of the repeated digit from the
virtual “subject”. The automatic prepotent response is produced without the presentation of an
MNIST image to the convolutional neural network, and is more likely to be incorrect than a
non-impulsive response produced with the presentation of an MNIST image to the convolutional
neural network. Thus, the prepotent impulsivity function can be considered a method to produce
erratic behaviors without the benefit of reasoning with executive functions (working memory) in
this model.

In addition to the prepotent impulse, the prepotent impulsivity function also includes a
competing executive function-activating component. The executive function-activating
component supports the activation of a response determined by executive functions, specifically
the presentation of an MNIST image to the convolutional neural network representing working
memory. The probability of carrying out an impulsive prepotent response is determined by
subtracting the strength of this executive function-activating component from the strength of the
prepotent impulse (Figure 3).

Figure 3. Effects of Repeated Handwritten Digits on Prepotent Impulsivity Function (PI = Prepotent
Impulse; EF = Executive Function-Activating Component; PR = Prepotent Response Probability)

Both the prepotent impulse (PI curve) and the executive function-activating component
(EF curve) of the prepotent impulsivity function are Gaussian functions calculated with time as
the independent variable. This time value is considered an abstract representation of
computational processing time and not a real time related to the computational task. Both
curves are constructed with a strength parameter (𝛼), an efficiency parameter (𝛽), and a delay
parameter (𝛾).
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(1)

(2)

The strength parameter determines the magnitude of the curve’s peak, the efficiency parameter
determines the rate at which the curve reaches its peak, and the delay parameter determines
the location where the curve begins to grow. While the values of the parameters for the
executive function-activating curve stay constant as the evaluation of the shuffled test set
proceeds, the magnitude of the strength parameter for the prepotent impulse curve increases at
a constant rate k each time an MNIST image containing the same handwritten digit as the
previously encountered MNIST image is presented but resets when an MNIST image containing
a different digit is encountered. Thus, for the nth MNIST image encountered (where d is the digit
contained in the image:

(3)

A prepotent response curve is generated by subtracting the value of the EF curve from the
value of the PI curve at each point. The difference between the maximum values at each curve’s
peak is used to calculate the prepotent response probability (PR) for each MNIST image:

(4)

The PR value is then compared to a randomly generated value between 0 & 1 (RV). If PR < RV,
then the response given by the virtual “subject” is determined by using the current MNIST image
as an input for the convolutional neural network of the “subject’s” working memory
representation. Otherwise, the response given by the virtual “subject” is simply a repeat of the
previously given response.

The purpose of the prepotent impulsivity experiment was to determine whether this
model could produce a significant difference in the performance of the working memory function.
All calculations were performed with Wolfram Mathematica v11.1, and data visualizations (bar
graphs) were produced with R v3.6. In this experiment two groups of convolutional neural
networks (n = 6 x networks per group) were generated with the training procedures described
earlier to produce a working memory deficient group and a “healthy” working memory group.
Each group’s baseline handwritten digit recognition accuracy was first evaluated on the MNIST
test set. Both groups were then evaluated on six trials of shuffled test sets with the addition of
the prepotent impulsivity function (all group “subjects” were evaluated with the same shuffled
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test set in each trial). The following set of parameters was used: k = 0.2, 𝛽1 = 0.75, 𝛼2 = 0.5, 𝛽2 =
0.25, and 𝛾1 = 𝛾2 = 0. These values were chosen to produce PI curves that peak rapidly and EF
curves rise more slowly, similar to the relative speeds of processing for these mental activities
as described in the race model.

Both the difference in handwritten digit recognition performance between groups and the
differences in handwritten digit recognition performance within each group with the addition of
the prepotent impulsivity function were tested for significance with the nonparametric
Mann-Whitney U Test. A Type I Error Rate ⍺ = 0.05 was chosen for significance. Since three
comparisons were performed, this error rate was maintained by the use of a Bonferroni
Correction to adjust the individual p-values by a factor of 3.

Results of this experiment are shown in Figure 4 & Table 1-2. As expected, the
performance of the “deficient” working memory groups was poorer than the “healthy” working
memory groups. The addition of the prepotent impulsivity function also lowered the performance
of both groups. Both the baseline difference in performance between the two working memory
groups, and the differences in performance within each group resulting from the addition of the
prepotent impulsivity function were significant (Table 2). These results indicate that a statistically
significant difference in handwritten digit recognition performance could be produced in both the
“healthy” and “deficient” working memory groups with the addition of the prepotent impulsivity
function.

Discussion
In summary, the beginnings of a computational model to generate personalized

executive function training activity regimens for children with ADHD was developed in this work.
This model utilizes a virtual “subject” constructed from a combination of core executive functions
that will complete virtual executive function training activities designed to resemble executive
function training activities completed by children with ADHD in a therapeutic video game
intervention. The model described here utilizes convolutional neural networks that identify
handwritten digits in the MNIST dataset as a representation for working memory, and includes a
prepotent impulsivity function that interferes with the use of this working memory representation.
Differences in working memory performance were produced by varying the number of MNIST
images used for training the convolutional neural networks, and it was shown that the addition of
the prepotent impulsivity function could provide an additional statistically significant effect on the
performance of working memory.

Working memory is defined as the ability to hold information in consciousness
(short-term memory) and manipulate it18. This definition leads to the rationalization for the use of
image identification by convolutional neural networks as a model for working memory. In the
current implementation, the input of an MNIST image file into the first layer of the network is
proposed to represent the holding of information in the consciousness component of working
memory, and the subsequent processing of this input data by the internal network layers is
proposed to represent the manipulation component of working memory. While the training
processes of ANNs are of greater interest than their functional processes in the context of this
work, consideration of functional modifications to make this working memory representation a
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more accurate representation of working memory function in humans may still be of use to
improve the translational capacity of this model to human subjects.

Figure 4. Effects of Prepotent Impulsivity Function on Group Handwritten Digit Recognition Accuracy of
CNNs on Shuffled MNIST TestSet (n = 6 x CNNs per Working Memory Group)

Table 1. Results Summary of Prepotent Impulsivity in Neural Networks Representing Working Memory
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Table 2. Summary of Statistical Comparisons Between Working Memory (WM) Groups

The input of data into the network as the short-term memory component of working
memory admittedly is not a strong representation of this mental ability for two reasons. First, the
data provided as input to the convolutional neural network is the actual MNIST example data
itself, so there is no recall mechanism to produce an internal representation of this MNIST
example data in its absence. Second, there is no holding mechanism to maintain this internal
representation of the data over time to allow its manipulation. Thus, the working memory
function could be improved through the addition of data recall and holding mechanisms to the
convolutional neural network. The recall mechanism would operate prior to the input of data to
the convolutional neural network, while the holding mechanism would operate simultaneously
with the processing of the input data in each hidden layer of the convolutional neural network.
These modifications could potentially improve the resemblance of this working memory function
to the function of working memory in biological neural networks by including a simplified
representation of the biological short-term memory component while maintaining a manageable
level of computational complexity.

Although several neural network models have been proposed to represent the short-term
memory component of working memory44, a degree of redundancy may exist in the actual
biological neural networks that are responsible for this executive function so no single
computational process is responsible for biological working memory in all cases45. Two
examples of artificial neural network models for modeling biological working memory include cell
assemblies and synfire chains. Cell assemblies46 consist of strongly interconnected groups of
neurons in a Hopfield model47 that maintain a persistent excitation pattern over time through
their mutual activation. Here, the output of a given group of neurons at one instance in time is
used as the input for this same group of neurons in the next instance to produce a recurrent
firing pattern. The excitation pattern maintained by cell assemblies is a representation of a piece
of information held in short-term memory, and this model relies on the use of the leaky-integrator
differential equation to model the temporal dynamics of input currents and firing rates of
individual neurons. Synfire chains48 also rely on the leaky-integrator differential equation to
model their temporal dynamics, but use a feedforward neural network model rather than a
recurrent Hopfield model. While the standard feedforward neural networks have the individual
neurons in each layer firing at varying rates, individual groups of neurons/layers in synfire
chains all fire simultaneously in time, and produce a persistent chain of spikes across multiple
layers that represent the piece of information held in short-term memory. These models have
been developed from the biophysical properties of individual neurons’ dynamic function, and
therefore attempt to capture a level of complexity that is too great for the purposes of this project
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at this time. Nevertheless, much of this complexity may be obviated with the selection and
design of simpler models that ignore these temporal dynamics of neural function while still
representing similar functions.

To represent the recall mechanism of short-term memory, a generative learning
algorithm49 could be added to the current working memory model. In contrast to discriminative
models (such as convolutional neural networks) that transform input data into a classification
category, generative models can receive a classification category as an input and reconstruct
data examples that correspond to the input category. This type of network could be trained to
produce an MNIST image as an output when a digit in the range 0-9 is provided as an input. By
modifying the training parameters of the generative model, the quality of the MNIST images
produced can be varied. Hence, a properly trained generative network with an effective recall
would reproduce high-quality MNIST images as outputs when provided with digit labels as
inputs, whereas a poorly trained generative network with an ineffective recall would produce
poor-quality MNIST images as outputs. These reproduced versions of MNIST images would
then be provided as inputs to the manipulation function represented by convolutional neural
networks in the current implementation of the working memory model. The high-quality MNIST
images produced by well-trained generative networks with effective recall would enable more
effective performance of the manipulation function represented by convolutional neural networks
and result in a higher probability of a correct handwritten digit identification and more effective
use of working memory as a whole. In contrast, the low-quality MNIST images produced by
poorly-trained generative networks with ineffective recall would impede the performance of the
manipulation function represented by convolutional neural networks and result in a lower
probability of a correct handwritten digit identification and less effective use of working memory
as a whole.

One potential approach to represent the holding mechanism of short-term memory is to
interfere with the passage of information between individual layers of the convolutional neural
network during the operation of the manipulation function. Although the original input data is
transformed with each passage from layer to layer, it can still be considered a modified
representation of the original information and therefore the act of transferring the output from
one layer as an input to the next layer could be considered analogous to holding the information
being manipulated. Within this context, a dysfunctional holding mechanism could be
represented with an ineffective transfer of information between layers (by randomly corrupting
the data values before they are input into a layer, for example) and an effective holding
mechanism could be represented by an unimpeded transfer of information between layers.

The design of the impulsivity function was influenced by both the race model34 and the
passive-dissipation hypothesis35 for the control of impulsive behavior. These theories have been
used to explain the results observed in the stop-signal task, which is a behavioral task requiring
the use of inhibitory control. Both of these theories describe impulsive responses and their
inhibition in terms of mental processes that grow in strength over time and compete to reach a
threshold value that activates a behavioral response. These theories differ in the mechanism of
impulsive behavior prevention, as the passive-dissipation hypothesis includes an active role for
inhibitory control (described below). The impulsivity function in the current project was designed
to represent the mental processes that compete to produce behavioral responses as described
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in these theories. However, the role of the impulsivity function at this time is the generation of
impulsive behaviors rather than their inhibition, although the design of an inhibitory control
component that works as described in the passive-dissipation hypothesis remains to be
addressed in future work.

The race model has been used to describe the mental processing of prepotent
responses and their inhibition in the stop signal task34. Prepotent responses are a category of
behavioral responses to stimuli for which immediate reinforcement is presently available or has
been available in the past, and were identified as a target for the behavioral inhibition executive
function in Barkley’s influential executive function theory for ADHD16. Prepotent responses can
be overlearned behaviors, occur impulsively without reflection, and can oftentimes conflict with
long-term goals. All individual trials in the stop signal task contain a “go” signal that requires the
experimental subject to select a response. A subset of these trials also include the presentation
of a “stop” signal at varying time intervals after the “go” signal has been presented, and require
the experimental subject to withhold the selection of a response. The presentation of the “stop”
signal after the “go” signal is significant in that the mental processing for responding to the “go”
signal is already active when the “stop” signal is presented. The race model proposes that these
processes are independent and compete to produce a behavioral response, and the resulting
behavioral response is activated by the process that reaches a given threshold more rapidly in
time.

The passive-dissipation hypothesis35 builds on the race model by allowing the prepotent
response to be overcome by the use of the executive function of inhibition to create a delay in
the decision to respond. This delay allows the slower correct response to continue growing in
strength to reach the response threshold as the prepotent response dissipates. While the use of
the executive function inhibition is not included in this project, the impulsivity function was
designed to allow for the use of inhibition to create a delay in the decision to respond. When this
delay occurs the slower mental process for an appropriate response grows in strength and
exerts a greater influence on the decision-making process.

Similar to the impulsivity function, both the race model and passive-dissipation
hypothesis describe impulsive behaviors and their inhibition in terms of competing mental
processes. However, while the race model and passive-dissipation hypothesis define this
competition as a race in time between mental processes to reach a given threshold value, the
impulsivity function defines this competition in terms of the relative magnitudes of the outputs of
the mental processes. In other words, the race model and passive-dissipation hypothesis
describe the resulting behavioral response as an outcome of only one of the mental processes,
while the impulsivity function defines the behavioral response as an outcome of an interaction
between both mental processes. In the race model the winning process is simply the process
which reaches the threshold first, while in the passive-dissipation hypothesis the winning
process is the one which reaches the threshold when the decision to act is made. In contrast,
the impulsivity function implements the resulting behavioral response as the outcome of an
interaction between both of the mental processes by subtracting the strengths of the outputs of
the mental processes.

This initial implementation of the impulsivity function was designed to create impulsive
responses to interfere with the operation of the working memory function in the absence of any
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influence from behavioral inhibition. Thus, the current version of the impulsivity function simply
defines the decision point as the time when the PR process curve reaches its peak value, which
is when the PR process exerts its maximum effect on the behavioral response and the EF
process exerts a relatively minor effect. However, a behavioral inhibition function may be added
in future implementations of the impulsivity function to create a delay of the decision point to
allow for the PR process to weaken as the EF process strengthens, leading to a greater
opportunity for the application of a productive behavioral response as reflected in a decreased
PRP value.

Two alternative computational methods that have been used for modeling inhibition are
the negative bias weight learning mechanism and the drift-diffusion model. The negative bias
weight learning mechanism50 was applied within the context of a dynamic gating neural network
model for a task-switching activity similar to the Wisconsin card sorting task, which is a
psychological test used to measure cognitive flexibility51. The negative bias weight learning
mechanism inhibits responses by rapidly decreasing the weight values for individual units in the
neural network to make them inactive. These weights are then allowed to gradually increase to
zero as the task continues to lift the inhibition. The negative bias weight learning mechanism
operates within the context of the continuous training of a neural network as it performs a given
task. In contrast, the impulsivity function operates as an external precursor to the CNNs in this
model, and therefore the negative bias weight learning mechanism would not be compatible
with this current approach.

A potential alternative method for the computational modeling of behavioral inhibition
processes is the drift diffusion model52. The drift diffusion model has garnered interest in
computational psychiatry to model decision-making processes53, and the parameters of this
model have been linked to neural functions54-57. It has been useful for modeling simple one- or
two-choice decisions54, where the selection of a decision is determined by one or more
stochastic drift processes that move towards boundaries representing the available decisions.
The stochasticity in the model is incorporated through the addition of random noise to the
movement of the drift processes as they travel towards a boundary. When the movement of the
drift process reaches one of the boundaries, a decision to complete the action represented by
that boundary is made.

In contrast to the negative bias weight learning mechanism, the drift-diffusion model
offers a viable alternative for the representation of impulsive behaviors and their inhibition
currently within the context of the prepotent impulsivity function developed here. While the
drift-diffusion model has a stronger record of evidence for its use, to our knowledge its
application has been limited to the modeling of decision-making in simple one- or two-choice
decision-making tasks. A complex gaming environment such as Minecraft, however, presents
dynamic decision-making scenarios where more choices may be available at any given moment
and choices are continuously removed or added as circumstances change. It is foreseeable that
higher complexity environments could present decision-making scenarios that require
alternative criteria for inhibitory decision-making that extend beyond the time-based processing
of alternatives by the drift-diffusion model. Therefore, the use of multiple inhibitory
decision-making models may be advantageous in this project to determine whether different
models may work more effectively in different varieties of decision-making scenarios.
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In conclusion, a unique computational representation of working memory and the mental

processes that generate impulsive behavior was developed in this project. This model
incorporates the training process of artificial neural networks as a potential method for predicting
personalized executive function training schedules in children with ADHD. As this model is still
in its preliminary stages, it will be necessary to incorporate representations of other executive
functions and develop virtual executive function training activities that rely on these
representations for their completion. Finally, the utility of this approach to guide the selection of
therapeutic interventions remains to be determined.
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