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Abstract 
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized          
by inattention, hyperactivity, and impulsivity. Our lab is currently conducting a pilot study to              
assess the effects of the online game Minecraft as a therapeutic video game (TVG) to train                
executive function deficits in children with ADHD. The effect of the TVG intervention in              
combination with stimulants is being investigated to develop a drug-device combination therapy            
that can address both the dopaminergic dysfunction and executive function deficits present in             
ADHD. Although the results of this study will be used to guide the clinical development process,                
additional guidance for the optimization of the executive function training activities will be             
provided by a computational model of executive functions built with artificial neural networks             
(ANNs). This model uses ANNs to complete virtual tasks resembling the executive function             
training activities that the study subjects practice in the Minecraft world, and the schedule of               
virtual tasks that result in maximum improvements in ANN performance on these tasks will be               
investigated as a method to inform the selection of training regimens in future clinical studies.               
This study first proposes the use of recurrent neural networks to model the fluid intelligence               
executive function. This model is then combined with a previously developed model using             
convolutional neural networks to model working memory and prepotent impulsivity to produce            
virtual “subjects” who complete a computational simulation of a Time Management task that             
requires the use of both of these executive functions to complete. The capability of this model to                 
produce groups of virtual “subjects” with significantly different levels of performance on the Time              
Management task is demonstrated. 
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Background 

Attention Deficit Hyperactivity Disorder (ADHD) is a highly prevalent neurodevelopmental          
disorder in children that is characterized by symptoms of inattention, hyperactivity, and            
impulsivity​1​. ADHD can cause difficulties in academic and social functioning, and can lead to              
adverse long-term outcomes such as drug addiction and criminal behavior​2​. While the exact             
cause of ADHD remains unknown, drug therapies have proven successful in controlling            
symptoms. However, these drug therapies have not proven effective for improving long-term            
outcomes​2​, their side effects limit use in a significant number of patients, and concerns about               
their safety has led to a wide preference for non-drug therapies​3​. 

An emerging alternative strategy for the treatment of ADHD is the training of executive              
functions, or a set of conscious mental processes that regulate attention and behavior​4​.             
Executive function deficits have been proposed as a potential cause for ADHD​5​, and             
computerized executive function training programs have been investigated as a potential           
treatment option​6​. The majority of these programs have been designed to target a single core               
executive function, such as working memory, that is thought to exert far-reaching effects across              
multiple areas of behavior​4​. While these programs were developed with the expectation that             
amelioration of these core executive function deficits would lead to improvements in ADHD             
symptoms and overall functioning, evidence of these far-transfer effects has thus far been             
limited. Although several studies have shown improvements in parent ratings of ADHD            
symptoms, teacher ratings and academic performance remained largely unaffected, indicating a           
lack of generalization of improvements in executive function across multiple environments​6,7​. 

Multiple strategies have emerged to address this lack of far-transfer effects resulting            
from executive function training interventions. Firstly, video game environments have been           
developed as a setting for executive function training activities to improve patient motivation and              
increase engagement with the training interventions. Video gaming has been shown to increase             
brain dopamine levels​8​, and functional deficits in children with ADHD may improve during video              
game play​9​. Secondly, the training strategies have expanded to target the training of multiple              
executive functions, as well as real-life skills requiring the use of executive functions for their               
application. For example, video game intervention designed to train working memory, inhibition,            
and cognitive flexibility improved both parent and teacher ratings of ADHD symptoms​10​. Another             
video game intervention was designed to train real-life skills such as time management,             
organization, planning, and cooperation, resulting in improvements in both parent and teacher            
ratings of childrens’ performance in time management (ADHD symptom ratings were not            
assessed)​11​.  
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An ongoing clinical pilot study is investigating the use of Minecraft as a therapeutic video               

game treatment for ADHD in combination with stimulants​12​. Minecraft provides an open-ended            
video game environment with a considerable degree of flexibility for the development of a              
variety of executive function training activities. Training activities to address both multiple core             
executive function deficits and real-life skills resulting from the use of executive functions are              
included in the present study. In order to address the heterogeneous nature of executive              
function deficits in ADHD​13​, a personalized treatment intervention that can provide an optimal             
schedule of executive function training activities for the pattern of deficits present in each              
individual patient to further improve outcomes is under development. This personalized           
treatment intervention will also include a stimulant dosage target to reduce the trial and error               
required to find an optimal dose for a given child with ADHD.  

A computational model utilizing artificial neural networks (ANNs) will be used to produce             
the personalized treatment recommendations. Artificial neural networks are a group of machine            
learning methods that can learn complex patterns in a dataset and use these patterns to               
generate predictions for new examples​14​. ANNs have generated a great deal of interest for their               
applications in healthcare. For example, ANNs have been shown capable of medical imaging             
diagnostic performance comparable to human physicians​15​, and even outperformed neurologists          
in diagnosing intracranial hemorrhages from CT scans​16​. Neural network-based technologies          
have also been developed for use in institutional medical settings to identify early-stage sepsis​17              
and predict the risk of deterioration in intensive care patients​18,19​. 

The structure and function of artificial neural networks were inspired by biological neural             
networks, although they remain a highly simplified approximation. Nonetheless, they can learn            
to make predictions in complex, changing environments and could therefore be used as a              
simplified model for the behavior of humans in an environment such as Minecraft. Thus, by               
developing a set of computational tasks performed by ANNs that resemble executive function             
tasks performed by human subjects in Minecraft it may be possible to gain insight into how                
human task performance is optimized by careful inspection of how ANN performance on their              
computational tasks is optimized. This hypothesis will guide the personalization of the executive             
function training activity schedule recommendations in the therapeutic video game          
intervention​20​. 

The objective of this work is to develop a computational task performed by ANNs that               
represents the use of time management skills in humans. This task was designed to require the                
use of the fluid intelligence and working memory executive functions, with the working memory              
function impeded by prepotent impulsivity. First, a fluid intelligence function represented by the             
performance of a factorization of the number 12 by basic recurrent neural networks (RNNs)​21              
was developed. This fluid intelligence function was then combined with the previously            
developed working memory and prepotent impulsivity functions that used convolutional neural           
networks (CNNs)​22 to identify handwritten digits in the MNIST test set​23 to create the              
computational Time Management activity. 

Methods and Results 

Generating Fluid Intelligence Deficiencies (​Colaboratory Notebook​) 
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Fluid intelligence is the use of adaptive reasoning in novel situations​4​. ​For the purposes              

of this project fluid intelligence is considered as a problem solving ability consisting of the               
mental processes analysis and synthesis​5​. ​The process of analysis involves the decomposition            
of complex information into smaller, simpler parts, while the process of synthesis involves the              
combination of simple pieces of information into more complex, novel combinations. To            
represent the fluid intelligence process of synthesis in this experiment, a computational            
Factorization of 12 activity was designed. This activity is performed by RNNs that are trained to                
produce a sequence of integer outputs in the range 1-10 that can be multiplied together to                
produce the larger integer 12.  

RNNs were chosen to perform the computational Factorization of 12 activity because            
they are capable of processing sequences consisting of multiple inputs​21​. Although the            
architectures of RNNs can vary considerably in complexity, the simplest form of RNN possesses              
a single internal layer that changes its state as the sequence is processed and three sets of                 
weight parameters. One set of weights processes the input to the network, another set of               
weights modifies the state of the internal layer of the network, and the third set of weights                 
converts the inner state of the network into an output. The inner state of the network changes as                  
each individual element of the input sequence is processed in a series of steps; this inner state                 
is affected by the current element being processed as well as all the previously processed               
elements and determines the output that the network produces at each step. As a result, the                
output of the network at each step depends on both the previously processed elements of the                
sequence and the currently processed element. 

To produce a list of integers that are factors of the number 12, the RNN is provided with                  
the start token as an initial input, and outputs a single predicted factor in the first step. This                  
predicted factor is recorded in a list, which is then provided as an input (rather than the start                  
token) for the RNN in the next step (Figure 1​)​. This process repeats until the RNN produces an                  
output indicating the sequence of factors is complete. 

All calculations for this experiment were performed with Python v3 in a Google             
Colaboratory Notebook. A basic RNN model modified from a RNN designed for language             
modeling and the generation of reddit comments​24 was implemented. This RNN contained a             
single inner layer of 100 units, used the tanh activation function (a non-linear function with               
outputs ranging from -1 to 1) to calculate the inner layer, and a softmax activation function ​to                 
generate a list of normalized probabilities for integers in the range 1-11 as an output. The                
number 0 was used as a “start token”, or initial input to signal the start of a factorization                  
prediction, while the number 11 was used as an “end token” to indicate the end of a sequence                  
of predicted outputs.  
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Figure 1.​ Factor Prediction for the Number 12 by a Recurrent Neural Network 

A training set composed of 29 training examples with features (inputs) and labels             
(correct outputs) were generated by hand. The set of training features consisted of lists of               
integers between 0 and 10, and the list for each training feature began with the integer 0. Lists                  
of integers that could be multiplied together to produce the number 12 and lists of integers that                 
could not be multiplied together to produce the number 12 were both included. The set of                
training features lists that produced the number 12 included all the permutations of each set of                
factors, while the training features lists that did not produce the number 12 simply consisted of                
the start token 0 followed by the incorrect factor. A matching training label was created for each                 
training feature. The training label for each example contained the same list of integers              
contained in the features for the example, but the start token 0 was removed and the end token                  
11 was added to the end of the list. 

To produce different categories of performance for the computational Factorization of 12            
activity, modifications were introduced into a supervised learning training procedure and           
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investigated for their effects on RNN performance. In this case, the data available for training               
was limited (29 training examples) so the differences in performance were created by varying              
the number of training cycles (or epochs) as the independent variable. All of the training               
examples are presented to a neural network in one training epoch, so the number of times a                 
neural network sees the set of training examples is equivalent to the number of training epochs.                
Ten groups of 12 x RNNs per group were assigned unique durations for their training ranging                
from 1 training epoch to 5,000 training epochs. The categorical cross-entropy loss function was              
used to measure the deviation between RNN outputs and correct predictions and calculate             
gradients to adjust parameter values. Stochastic gradient descent with a learning rate of 0.005              
was used for the optimization method to adjust parameter values. 

After training, the performance of each RNN was evaluated by calculating its percent             
accuracy on 100 factorization of 12 predictions. As expected, the mean percent accuracy for the               
RNNs in each group increased with the number of training epochs in a logarithmic relationship               
(​Figure 2​). ​The minimum group mean accuracy was 0.5 % (SD 0.9%) for the RNN group trained                 
for 1 epoch while the maximum group mean accuracy achieved was 81.1% (SD 2.9%) for the                
RNN group trained for 5,000 epochs. The rate of improvement in performance began to level off                
at a group mean accuracy of 74.2% (SD 5.4%) with 250 training epochs, although significant               
improvements in performance were still observed as the number of training epochs was             
increased further. 

The training procedure for “deficient” fluid intelligence RNNs was selected to achieve a             
goal of approximately 50% mean factorization of 12 accuracy, while the training procedure for              
“healthy” fluid intelligence RNNs was selected with a consideration of performance and            
computational efficiency. The goal performance level for “deficient” fluid intelligence was           
achieved in RNNs trained for 75 epochs (group mean accuracy = 48.3% (SD 4.1%). Training for                
1000 epochs was selected as the learning procedure for “healthy” fluid intelligence RNNs to              
achieve a mean group accuracy of 77.6 % (SD 4.2%) with a sacrifice of 3.5% accuracy in                 
exchange for significantly improved computational efficiency compared to training for 5000           
epochs. 

 
Figure 2​. Effect of Number of Training Epochs on Mean Group Accuracy of Factorization of 12 in 
Recurrent Neural Networks (n = 12 x RNNs Per Group) 
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In summary, a computational representation for the synthesis function of the higher order             

executive function fluid intelligence in humans was developed in this experiment. This model             
includes basic RNNs to predict integers between 1 and 10 that can be multiplied together to                
produce the number 12, where a “healthy” fluid intelligence is represented by RNNs with high               
Factorization of 12 accuracy and a “deficient” fluid intelligence is represented by RNNs with              
poor Factorization of 12 accuracy. This Factorization of 12 fluid intelligence function was then              
integrated together with the MNIST handwritten digit recognition function representation for           
working memory and the prepotent impulsivity function to create the first implementation of             
virtual “subjects” who perform a virtual Time Management task. 

Time Management Task (​Colaboratory Notebook​) 
A pertinent example of the use of fluid intelligence is in the practice of time management.                

When considering how to complete a complex task most efficiently, one may first analyze the               
task carefully to determine the individual steps needed for its completion. There will be a finite                
number of ways to organize these steps, and the best sequence of steps will be the one that                  
produces the best outcome in the shortest amount of time. Working memory and the synthesis               
process of fluid intelligence can be used to mentally rehearse the completion of varying              
combinations of these steps and determine the time required to complete them. Some             
combinations of steps may overlap better in time than others when they are completed              
sequentially, and some steps may be found to provide minimal contributions to the overall goal.               
The order of the overlapping steps may then be preserved in the final sequence, and the                
marginally important steps may be left at the end of the sequence to be completed after the                 
more highly prioritized steps should time permit. In this way, fluid intelligence can work together               
with the core executive function working memory in a time management activity. 

While the working memory and fluid intelligence functions are each represented by the             
performance of individual ANNs in performing a given activity representing an executive            
function, the Time Management task consists of a group of ANNs performing their given              
activities in tandem to complete a given task together. This combination of multiple ANNs              
working together to complete a task can be thought of as a virtual “subject” that utilizes multiple                 
executive functions to complete a computational representation of an executive function training            
activity completed by human subjects in the therapeutic video game intervention (Figure 3). 
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Figure 3.​ Building the Virtual “Subject” 

Similar to the fluid intelligence task described in the previous section, the goal of the               
Time Management task is to create a list of integers between 1 and 10 that can be multiplied                  
together to produce the number 12. However, the process required to achieve this goal is               
modified in three important ways. Firstly, the Time Management task is not complete after a               
single factorization of 12 attempt, but rather continues until a successful factorization of 12 is               
completed (Figure 4). Secondly, the Time Management task requires the use of the working              
memory function impeded by the prepotent impulsivity function for its completion. The working             
memory function with prepotent impulsivity is used after the prediction of a single factor to locate                
and correctly identify an MNIST image that contains the predicted factor as its handwritten digit               
in the MNIST test set. Finally, the performance of the Time Management task is measured by                
the total number of MNIST test set images searched through to complete a successful              
factorization of 12 rather than the percentage of successful factorizations. 
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Figure 4.​ Recurrent Neural Networks (Fluid Intelligence) in the Time Management Task 

The procedure to create virtual “subjects” who complete the virtual Time Management            
task is simply the combining of the previously developed neural network training procedures.             
Each virtual “subject” consists of a working memory function consisting of a CNN trained for               
handwritten digit recognition in the MNIST test set, a set of parameters for the prepotent               
impulsivity function that impedes the performance of the working memory function, and a fluid              
intelligence function consisting of an RNN trained to factorize the number 12. Two groups of               
virtual “subjects” with n = 6 x virtual “subjects” per group were created: a control group with                 
“healthy” working memory and fluid intelligence and an “ADHD” group with “deficient” working             
memory and fluid intelligence. Prepotent impulsivity​25 was included in all “subjects” in both             
groups with the control group possessing a set of parameters that leads to lower impulsivity               
than the “subjects” in the “ADHD” group. 

All computations for the Time Management task were performed with Python v3 in a              
Google Colaboratory Notebook, and the creation and training of CNNs were performed with the              
Keras Machine Learning Library​26​. Data visualizations were created with R v3.6. ANNs for the              
virtual “subjects” in the control group were trained with the learning procedures that produced 6x               
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“healthy” working memory and 6x “healthy” fluid intelligence representations, while ANNs for the             
virtual “subjects” in the ADHD group were trained with the learning procedures that produced 6x               
“deficient” working memory and 6x “deficient” fluid intelligence representations. All ANNs           
(CNNs​25 and RNNs) for each executive function representation possessed an identical           
architecture across both groups as previously described. “Healthy” working memory          
representations for six virtual control “subjects” were produced by training each of six CNNs with               
2,500 handwritten digit images randomly selected from the MNIST training set and “deficient”             
working memories for six virtual “ADHD subjects” were produced by training each of six CNNs               
with 25 randomly selected MNIST training set images. Similarly, “healthy” fluid intelligence            
representations for six virtual control “subjects” were produced by training each of six basic              
RNNs for 1,000 epochs to factorize the number 12 and “deficient” fluid intelligence             
representations for six virtual “ADHD subjects” were produced by training each of six basic              
RNNs for 75 training epochs. Baseline accuracies of the working memory representations were             
measured by handwritten digit recognition by CNNs on the MNIST test set while baseline              
accuracies of the fluid intelligence representations were determined on 100x factorization of 12             
attempts by RNNs.  

After training and evaluation of baseline performance of all ANNs, the Time Management             
task was performed by the virtual “subjects” (Figure 5). In the first step of the task, the virtual                  
“subject’s” fluid intelligence representation uses a basic RNN to perform a single factor             
prediction. The identity of this factor is then provided to the virtual “subject’s” working memory               
representation with prepotent impulsivity, and the virtual “subject” begins to identify handwritten            
digits in randomly selected images from the MNIST test set. The virtual “subject’s” prepotent              
impulsivity function is operational with each identification, and may activate an automatic            
impulsive response where the virtual “subject” simply responds with its previous handwritten            
digit recognition output rather than using its working memory representation to identify the             
handwritten digit with a CNN. The automatic impulsive response becomes more likely as             
multiple MNIST images containing the same handwritten digit are encountered in succession.            
This search continues until the predicted factor is located AND correctly identified in the MNIST               
test set. Once the search is successfully completed, another factor prediction is performed and              
this sequence of steps continues until a complete factor list is predicted and all of its elements                 
are correctly identified in the MNIST test set. When a correct factor list is predicted one trial of                  
the task is complete. Otherwise, this procedure is repeated until a correct factor list is produced.                
Each virtual “subject” completed 25 successful factorizations of 12 trials, and a mean MNIST              
test set images searched count for all the trials was calculated for each “subject”.  

 
CIC Pharmaceutical Sciences  Research paper 
 

http://contactincontext.org/
http://contactincontext.org/


Contact  
 ​in Context CIC Pharmaceutical Sciences                    11 

      Tiitto 

 

Figure 5.​ Time Management Task Flowchart 

Due to the small sample size, the nonparametric Mann-Whitney U Test was used to test               
for significant differences between groups in baseline executive function performances and           
performance in the final Time Management task. A Type I Error Rate ⍺ = 0.05 was chosen for                  
significance. Since three comparisons were performed, this error rate was maintained by the             
use of a Bonferroni Correction to adjust the individual p-values by a factor of 3. 
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Figure 6. Baseline Difference in Mean Group Accuracy of Handwritten Digit Recognition on MNIST              
TestSet by Convolutional Neural Networks of Virtual “Subjects” in the Time Management Task (n = 6 x                 
CNNs Per Group) 

Results of this experiment are shown in Table 1 and Figures 6-8. As expected, a               
significant difference was found between both groups in the baseline performance of their             
executive functions. The health control “subjects” searched through a mean number of 9 to 38               
images to complete their 25 trials of the Time Management task. In contrast, the performance of                
the ADHD “subjects” was far more variable, as they required a mean number of 44-1278 images                
to complete their trials. This difference between groups in the performance of the Time              
Management was also found to be statistically significant. 

 
Table 1.​ Results Summary of Neural Networks Representing Executive Functions and Virtual “Subjects” 
in the Time Management Task 
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Figure 7. Baseline Difference in Mean Group Accuracy of Factorization of 12 by Recurrent Neural               
Networks of Virtual “Subjects” in the Time Management Task (n = 6 x RNNs Per Group) 

These results indicated that this model composed of virtual “subjects” built from            
executive function representations of working memory and fluid intelligence with impulsivity that            
complete a virtual Time Management task that requires the use of these executive function              
representations was able to produce two groups of “subjects” with distinct levels of performance              
in the virtual task. 

Discussion 
In summary, this experiment used a basic RNN model to serve as a simplified model of                

fluid intelligence, and a procedure was developed to produce “healthy” and “deficient” fluid             
intelligence performance. This fluid intelligence representation was combined with the          
previously developed working memory & impulsivity representations to create a virtual “subject”            
who completed a simulated Time Management task that required the use of these executive              
function representations. Finally, a significant performance difference between “healthy” and          
“deficient” virtual “subjects” in this task was demonstrated. 
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Figure 8. Performance of Virtual “Subjects” in the Time Management Task (n = 6 x Virtual “Subjects” Per                  
Group) 

The Factorization of 12 task using basic RNNs to output factor sets of the number 12                
was used as a representation for the synthesis component of fluid intelligence in this              
experiment. This task can be improved by the inclusion of a representation for the process of                
analysis to create a more comprehensive model of fluid intelligence and by adopting a different               
variety of RNN to increase the complexity of the task. Consider the process of analysis               
(breaking down complex ideas) as the inverse of the process of synthesis (building up complex               
ideas). When the process of synthesis is then represented as the building up of the “complex”                
number 12 from its simpler component factors, the process of analysis may be represented as               
the breaking down of the number 12 into its simpler component factors. Thus, the fluid               
intelligence operation that currently consists of the process of synthesis will be expanded to              
include an RNN task to break down the number 12 as a representation for the process of                 
analysis. 

In the current version of the task, the RNN begins by producing a factor of the number                 
12, which is then used as an input in the next loop of the task for the RNN to output another                     
factor. This process continues until the RNN produces an output to indicate the end of the                
sequence of factors and then concludes with an evaluation of the accuracy of the sequence.               
The reverse process can be implemented through the modification of the RNN’s training set.              
The training set will be differentiated into two separate categories, where one category consists              
of factor sequences with factors ordered from smallest to largest in size and vice-versa for the                
other category. The training set with examples ordered by increasing size of their factors will               
train RNNs for the process of synthesis (where the larger number is assembled), while the               
training set with examples ordered by decreasing size will train RNNs for the process of analysis                
(where the larger number is broken down). 

The fluid intelligence model can be improved by the substitution of the basic RNNs with               
Long-Short Term Memory networks (LSTMs)​27​. While basic RNNs indiscriminately update every           
parameter of their internal layer with each step of the sequence they produce, LSTMs include               
additional “forget” gates in this updating process that screen for and exclude the passage of               
extraneous information to the internal layer between steps in the sequence. This increased             
efficiency of updating permits the processing of larger sequences in LSTMs, and thus LSTMs              
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would be beneficial to permit the analysis and synthesis of larger numbers in this project. The                
capability to process larger numbers in this way would allow the creation of multiple difficulty               
levels for the task to more accurately capture the properties of the therapeutic video games               
tasks which have multiple difficulty levels. 

A comparison of this representation of fluid intelligence to alternative modeling           
approaches is difficult due to a paucity of research related to the neural functions that produce                
this executive function. The function of a network of brain regions known collectively as the               
Multiple-Demand System has been proposed to play a general role across multiple complex             
problem solving tasks in primates​28​. Detailed functional neural network theories are lacking            
however. While a recent theory has proposed that fluid intelligence results from a widespread,              
randomly connected network structure of groups of neurons​29​, to our knowledge there does not              
seem to be any research available that examines the computations that these types of networks               
conduct. However, it is recognized that this representation of fluid intelligence is grossly             
simplified compared to the underlying biological functions. Nonetheless, an accurate          
representation of the functional complexity of fluid intelligence may not be a necessary             
prerequisite for modeling the effects of the learning processes that improve its performance.  

In addition to their potential applications in drug discovery and the practice of medicine,              
ANNs and other machine learning methods have also drawn interest as tools to improve clinical               
trial execution and design. For example, the patient selection process can be aided by search               
tools that are able to interpret and synthesize patient health information from a variety of               
sources, and patient adherence & retention can be improved by wearable technologies that             
report data from clinical monitoring parameters to machine learning systems that then analyze             
it​30​. Furthermore, machine learning models are under development to predict disease           
progression, such as in Alzheimer’s disease​31​. These models can be used to inform both patient               
selection and clinical trial design to increase the likelihood that a given clinical endpoint can be                
achieved successfully​32​. This work also aims to enhance clinical trial design, but does so in a                
unique way. Rather than modelling the disease process to optimize the effects of a single               
treatment during a clinical study, this simulation seeks to model the effects of a variety of                
treatment options to inform the selection of an optimal intervention.  

The Time Management task described here is the first of a series of computational              
representations of executive function training activities that are part of a therapeutic video game              
treatment utilizing the online platform Minecraft to treat children with ADHD. This intervention             
will utilize a novel personalized medicine approach where an individualized treatment regimen            
consisting of an initial stimulant dose recommendation and schedule of therapeutic video game             
activities will be determined from the initial ADHD assessment results of new patients. We              
hypothesize that the training of ANNs can serve as a computational model for the adaptations               
that biological neural networks undergo in response to practice of activities requiring the use of               
executive functions. In the model, a set of ANNs will first be trained to resemble the pattern of                  
executive function deficits reflected in a new patient’s assessment responses. A large set of              
virtual tasks resembling the therapeutic video game activities will be tested in the model, and               
the set of virtual tasks that produces the maximum improvements in the ANNs of the virtual                
“subject” will predict the analogous set of therapeutic video game tasks most beneficial for the               
human patient. A future clinical study will test this hypothesis by including an experimental              
group with a personalized executive function activity training schedule guided by the            

 
CIC Pharmaceutical Sciences  Research paper 
 

http://contactincontext.org/
http://contactincontext.org/


Contact  
 ​in Context CIC Pharmaceutical Sciences                    16 

      Tiitto 
computational model that will be compared with a control group completing an executive             
function activity training intervention that is not guided by the computational model. 
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